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Abstract

This study investigated the prediction of the risk of
hypoxic ischemic encephalopathy using intrapartum car-
diotocography records with a long short-term memory re-
current neural network. Across the 12 hours of labour, HIE
sensitivity rose from 0.25 to 0.56 as delivery approached
while specificity remained approximately constant with a
mean of 0.71 and standard deviation of 0.04. The results
show that classification improves as delivery approaches
but that performance needs improvement. Future work will
address the limitations of this preliminary study by inves-
tigating input signal transformations and the use of other
network architectures to improve the model performance.

1. Introduction

Hypoxic ischemic encephalopathy (HIE) is a brain in-
jury caused by the impaired delivery of oxygen to the brain
[1]. The estimated incidence of neonatal HIE is around 1.5
per 1000 live births in developed countries and 10-20 per
1000 live births in low- and middle-income countries [1,2].

Neonatal HIE, a syndrome of disturbed neurologic func-
tion in the earliest days of life, is characterized by difficulty
with initiating and maintaining respiration, depression of
tone and reflexes, sub-normal levels of consciousness, and
seizures [3]. Generally, over half of newborns diagnosed
with neonatal HIE die or develop major impairment (such
as cerebral palsy, hearing loss, visual impairment, cogni-
tive problems) by age 3 years [4].

Clinicians monitor both fetal and maternal well-being
during labour using cardiotocography (CTG) which mea-
sures fetal heart rate (FHR), uterine pressure (UP) and ma-
ternal heart rate (MHR). Clinicians use visual interpreta-
tion of these CTG signals to assess fetal condition and to
determine when to intervene – by performing a Cesarian

section (CS) – to prevent neonatal death or HIE [5]. Unfor-
tunately, the visual assessment of CTG signals has signif-
icant inter- and intra-observer variability [5, 6]. This inac-
curate interpretation of CTG signals also contributed to an
increased rate of CS and assisted deliveries [6,7]. Further-
more, clinical guidelines give no specific management rec-
ommendations for the great majority of FHR signals (over
80%) that are categorized as “indeterminate risk” [8, 9].

Machine learning (ML) and deep learning (DL) meth-
ods may have the potential to improve the interpretation
of CTG signals. The computation of engineered FHR fea-
tures for use with classical ML methods is a difficult task
that has yet to produce features sufficiently informative
for FHR classification [10]. Some publications have re-
ported approaches to fetal state detection using DL with
CTG [11–14]. However, the majority of these have used
datasets that were too small to fully support the develop-
ment of DL models. Additionally, these datasets did not
include HIE cases. Thus, there is a need to conduct DL ex-
periments with a large cohort of births. Using the 250,000
CTG records in our database, our objective is to investigate
DL models for the early assessment of the risk of develop-
ing HIE using raw and transformed CTG records. This pa-
per presents early results using FHR and a long short-term
memory (LSTM) network to assess the intrapartum risk of
HIE.

2. Method

This section briefly discusses the clinical data and the
data preprocessing carried out. Next, it describes the clas-
sification experiments conducted using these data.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.344



-12 -11 -10 -9 -8 -7 -6
Time before delivery (hrs)

60

80

100

120

140

160

180

FH
R

 (
bp

m
)

Repaired FHR

Figure 1. A 6 hour extract of typical repaired FHR signal.
Each color corresponds to a different segment due to the
presence of a gap. This repaired FHR record had 14 gaps
of varying lengths within the 12th and 6th hour before de-
livery.

2.1. Clinical data

The clinical data comprised 12 hours of de-identified
CTG signals obtained from 246,973 births at the 15 hos-
pitals of Kaiser Permanente Northern California between
2010 and 2019. We included singleton live births, with
gestational age ≥ 35 weeks, without congenital or chromo-
somal abnormalities and with electronic fetal monitoring.
Analysis was limited to vaginal births since CS pre-empts
the observation of the normal labour time course.

HIE was defined as the presence of both acidosis and
encephalopathy, where acidosis was defined as pH < 7 or
base deficit ≥ 10 mmol/L from the umbilical cord blood
gas measurements shortly after birth. The healthy group
comprised newborns who exhibited no encephalopathy or
seizures, had Apgar at 5 minutes ≥ 7, had no chest com-
pression or intubation, and were discharged home alive.

The resulting data set comprised CTG signals from 173
HIE, 2,003 Acidosis and 24,620 healthy (without acidosis)
cases. The number of HIE cases reflects its expected low

incidence. This study focused on CTG signals from 145
HIE and 170 randomly under-sampled healthy fetuses.

2.2. Data preprocessing

We used PeriCALM Patterns, proprietary software from
PeriGen Inc. [15], to identify artifacts, remove noise and
repair the FHR signals. Figure 1 shows a repaired FHR
signal. Each colored segment of FHR is separated by a
gap, which occurs when sensors detach during acquisition.
The repaired signals were decimated from 4 Hz to 1 Hz
to reduce training time. The factor of 4 was selected after
determining that this retained 96.9% of the FHR power for
both HIE and healthy cases. The decimated FHR retained
the low frequency (30–150 mHz) and movement frequency
(150–500 mHz) bands [16]. Finally, we divided the record-
ing into 20-minute non-overlapping segments, this gener-
ated 36 segments for the longest recordings of 12 hrs.

2.3. Classification

Train, test, and validation indexes were randomly per-
muted for each fold, generating 10 non-overlapping test
sets for 10-fold cross validation. In each fold during train-
ing, the train and validation data for all segments were con-
catenated and used to train and validate a 3-layer LSTM
model, with three hidden layers of 128, 256 and 128 cells.
An early stopping value of 30 training epochs ensured that
the trained model did not overfit the training dataset, while
the maximum training epoch and batch size was set to
1000 and 32, respectively. For each fold, the LSTM model
was trained 30 times and the model with the lowest val-
idation loss retained. The Adam optimizer with learning
rate of 0.0001 and binary cross entropy loss were selected
for all classification experiments. This model was used to
independently evaluate the fold’s test data for each labour
epoch (i.e., we evaluated the classification performance for
each segment separately) in terms of the average, across
folds, of the sensitivity, specificity, and area under the re-
ceiver operating characteristic (AUROC) as functions of
labour time.

3. Results

Figure 2 shows the AUROC, sensitivity, and specificity
for the test data as functions of time. The AUROC rose
steadily as delivery approached (from 0.51 to 0.67) as did
HIE sensitivity (from 0.25 to 0.56); specificity remained
approximately constant over the 12 hours with a mean of
0.71 and standard deviation of 0.04.
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Figure 2. Classification performance metrics as a function of time before birth. (A) Area under the receiver operating
characteristic (AUROC), (B) Sensitivity and (C) Specificity. The lines indicate the mean while the error bars represent the
standard error of the mean.

4. Discussion

The current performance shows some promising results
towards delivery but there is room to improve the pre-
diction performance. Sensitivity captures the ability of a
model to correctly recognize individuals with a medical
condition while specificity captures the model’s ability to
accurately identify patients without a medical condition.
Due to the inherent challenge of class imbalance, the low
sensitivity of HIE cases and the low specificity of normal
cases will produce false negatives and false positives, re-
spectively. However, the 0.56 sensitivity obtained near de-
livery correlates with clinical sensitivity of approximately
50% [16]. But an early prediction of the risk of HIE and a
higher specificity is desirable within a clinical setting.

Our current approach is limited by class imbalance mit-
igation (through random under-sampling) that did not tap
the potential of all our available data. In future works, we
will explore other class imbalance approaches such as cost
sensitive learning, where a higher cost (error weighting)
will be assigned to the misclassification of samples from
the minority class [17].

The class label of each 12-hour FHR is determined after
the time of birth and our current reference point for anal-
ysis is the time of delivery. This is a major limitation for
clinical application as there is no objective measure during
labour about when the fetal compromise commences. In
future work, we will shift our analysis from time of deliv-
ery to labour onset and explore other methods to resolve

the limitations of the study.
The separate classification of each 20-minute non-

overlapping segment is not directly applicable in a clinical
setting. This independent classification of each segment
means there is no memory of past states in previous seg-
ments that could help predict the current state. We will
resolve this limitation by using longer epochs or ensuring
that the LSTM state is not reset at the end of the epoch.

The reliance on an LSTM- representation and a single-
channel FHR input have not produced very good predic-
tions by the trained models. Hence, we will explore the
added benefits of adding MHR and UP to the DL model,
which may also be beneficial.

The authors in [12] reported that convolutional neural
networks models outperformed LSTM models, hence we
will also assess these DL structures. Finally, we will as-
sess the transformation of the raw preprocessed CTG using
methods such as the spectrogram and scalogram.

5. Conclusion

The aim of this project is to improve the early detection
of intrapartum risk of developing HIE using a large co-
hort of births. This current study focused on single chan-
nel FHR input to train an LSTM network. The preliminary
studies show some promising results, but the model perfor-
mance needs improvement and there are limitations to be
addressed. Future work will work on improving the model
performance and addressing the current limitations.
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